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Abstract

Human syntax acquisition involves a system that can learn constraints on possible word sequences in typologically-different human
languages. Evaluation of computational syntax acquisition systems typically involves theory-specific or language-specific assumptions
that make it difficult to compare results in multiple languages. To address this problem, a bag-of-words incremental generation
(BIG) task with an automatic sentence prediction accuracy (SPA) evaluation measure was developed. The BIG–SPA task was used
to test several learners that incorporated n-gram statistics which are commonly found in statistical approaches to syntax acquisition.
In addition, a novel Adjacency–Prominence learner, that was based on psycholinguistic work in sentence production and syntax acqui-
sition, was also tested and it was found that this learner yielded the best results in this task on these languages. In general, the BIG–SPA
task is argued to be a useful platform for comparing explicit theories of syntax acquisition in multiple languages.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Children, computers, and linguists have similar chal-
lenges in extracting syntactic constraints from language
input. Any system that acquires syntactic knowledge (a
syntactic learner) must confront the fact that words do
not come labeled with syntactic categories and the syntactic
relations that can hold among these words can vary to a
great extent among languages. This article presents a
method for evaluating syntactic learners, that is, how well
they have acquired syntactic knowledge from the input.
This method, which uses a bag-of-words incremental gener-

ation (BIG) task and an evaluation measure called sentence

prediction accuracy (SPA), is applied to several formally-
specified learners, as well as to a new learner called the
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Adjacency–Prominence learner. It will be shown that the
SPA measure is capable of evaluating the syntactic abilities
in a variety of learners using input from typologically-dif-
ferent languages and it does so in a manner that is rela-
tively free of assumptions about the form of linguistic
knowledge.

Words in utterances are not labeled with syntactic cate-
gories, and there is variability in how linguistic theories
characterize the syntactic constraints on an utterance.
For example, constructions are a type of syntactic unit in
some theories (Goldberg, 1995), but not others (Chomsky,
1981). Syntactic constraints also differ across languages,
and it is difficult to adapt a particular theory of syntactic
categories or constraints to typologically-different lan-
guages (Croft, 2001). For example, the adjective category
is often thought to be a universal syntactic category, but
in many languages, it is difficult to distinguish adjectives
and stative verbs (e.g., Chinese, Li & Thompson, 1990)
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and in some languages, there are several adjective catego-
ries (e.g., Japanese, Tsujimura, 1996). Since the labeling
of corpora requires that one make particular assumptions
about the nature of syntax, the evaluation of syntactic
knowledge with these human-labeled corpora is both
theory- and language-dependent. These evaluation meth-
ods work best for mature areas of syntactic theory, such
as the evaluation of adult English syntactic knowledge,
but are less suited for areas such as syntax acquisition or
linguistic typology, where there is more controversy about
the nature of syntax (Croft, 2001; Pinker, 1989; Tomasello,
2003).

A large number of computational approaches for learn-
ing syntactic knowledge are evaluated against human-
labeled corpora. For example in part-of-speech tagging, a
tagger attempts to predict the syntactic category (or tag)
for each of the words in an utterance, and the system is
evaluated by comparing its output against the human-
labeled tag sequence associated with the test utterance
(Church, 1989; Dermatas & Kokkinakis, 1995). The set
of tag categories that are used to label a particular corpus
is called its tagset, and different corpora, even in the same
language, use different tagsets (Jurafsky & Martin, 2000).
In addition, the same tagger can show different levels of
performance, when evaluated against different types of cor-
pora or different tagsets. Atwell et al. (2000) trained a
supervised tagger with a single corpus that had been tagged
with eight different English tagsets and found significant
variation among the tagsets in test accuracy from 86.4%
to 94.3%. When taggers are applied to multiple languages,
there is an additional problem that the tagsets are not
equated across the languages, because tagsets can vary in
the specificity of the categories or in the degree that seman-
tic or formal criteria are used for assignment of categories
(Croft, 2001). For example, Dermatas and Kokkinakis
(1995) found that the same Hidden Markov Model for
part-of-speech tagging (HMM-TS2) with the same amount
of input (50,000 words) labeled with the same set of catego-
ries (extended grammatical classes) yielded better accuracy
levels for English (around 5% prediction error, EEC-law
text) than for five other European languages (Greek yielded
more than 20% prediction error). Since many of the rele-
vant factors were controlled here (e.g., input size, learner,
categories), the large variability in accuracy is probably
due to the match between the categories and the utterances
in the corpora, in this case, the match was better for Eng-
lish than Greek. If that is the case, it suggests that evaluat-
ing these systems with this tagset is inherently biased
towards English. Other evaluation measures in computa-
tional linguistics, such as the learning of dependency struc-
tures, also seem to be biased toward English. Klein and
Manning (2004) found that their unsupervised dependency
model with valence plus constituent-context learner yielded
accuracy results in English of 77.6% (Fig. 6 in their paper,
UF1), but German was 13.7% lower and Chinese was
34.3% lower. In addition to these biases, English corpora
are often larger and more consistently labeled and together
these factors help to insure that there will be a bias towards
English in evaluation of computational systems. But since
humans can learn any human language equally well, it is
desirable to have a way to evaluate syntax that is not inher-
ently biased for particular languages.

One area of computational linguistics that has been
forced to deal with variability in syntax across languages
is the domain of machine translation. In translating an
utterance from a source language to a target language,
these systems attempt to satisfy two constraints. One con-
straint is to ensure that the meaning of the source utterance
is preserved in the target utterance and the other constraint
is that the order of words in the target utterance should
respect the syntactic constraints of the target language. In
statistical approaches to machine translation, these con-
straints are supported by two components: the translation
model and the language model (Brown, Della Pietra, Della
Pietra, & Mercer, 1993). The translation model assumes
that the words in the source utterance capture some of its
meaning, and this meaning can be transferred to the target
utterance by translating the words in the source language
into the target language. Since words in some languages
do not have correspondences in other languages, the set
of translated words can be augmented with additional
words or words can be removed from the set. This set of
translated words will be referred to as a bag-of-words, since
the order of the words may not be appropriate for the tar-
get language. The ordering of the bag-of-words for the syn-
tax of the target language is called decoding, and involves
the statistics in the language model. Statistical machine
translation systems are not able to match human generated
translations, but they are able to generate translations of
fairly long and complicated utterances and these utterances
can be often understood by native speakers of the target
language.

In statistical machine translation, the ordering of the
words in an utterance is a whole utterance optimization
process, where the goal is to optimize a particular metric
(e.g., the transition probabilities between words) over the
whole utterance. This optimization is computationally
intensive, since finding an optimal path through a set of
words is equivalent to the Traveling Salesman problem
and therefore is NP-complete (Knight, 1999). There is how-
ever no guarantee that humans are doing whole sentence
optimization of the sort that is used in statistical machine
translation. And there is experimental evidence from
humans that contradicts the assumptions of whole sentence
optimization and suggests instead that speakers can plan
utterances incrementally. Incremental planning means that
speakers plan sentences word-by-word using various
scopes of syntactic and message information. Incremental
planning during production predicts that words that are
more accessible due to lexical, semantic, or discourse fac-
tors will tend to come earlier in utterances and there is a
large amount of experimental evidence supporting this
(Bock, 1982, 1986; Bock & Irwin, 1980; Bock & Warren,
1985; Bock, Loebell, & Morey, 1992; Ferreira & Yoshita,
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2003; Prat-Sala & Branigan, 2000). Notice that in whole
sentence planning, accessible words can be placed any-
where in the sentence and therefore there is no explanation
for why they tend to go earlier in sentences. In addition to
this work on accessibility, the time spent planning a sen-
tence is not consistent with whole sentence optimization.
In statistical machine translation systems that do whole
sentence optimization, the time it takes to plan and initiate
an utterance depends on utterance length (Germann, Jahr,
Knight, Marcu, & Yamada, 2004), but in humans, sentence
initiation times can be equivalent for different length sen-
tences and this suggests that humans are only planning part
of the utterance (Ferreira, 1996; Smith & Wheeldon, 1999).
And furthermore, human utterances are not globally opti-
mal in terms of transition statistics. Humans sometimes
produce non-canonical structures such as heavy NP shifted
structures (e.g., ‘‘Mary gave to the man the book that she
bought last week’’; Hawkins, 1994; Stallings, MacDonald,
& O’Seaghdha, 1998; Yamashita & Chang, 2001) that vio-
late the local transition statistics of the language (‘‘gave to’’
is less frequent than ‘‘gave the’’). Therefore while whole
sentence optimization is an appropriate computational
approach to solving the utterance-ordering problem, it
may not be the most appropriate way to model the process
that people use to generate utterances. Since our goal is to
have an evaluation measure of syntax acquisition and use
that is compatible with experimental work on syntax
acquisition and sentence production, our evaluation task
will be designed to accommodate incremental or greedy
approaches to sentence generation.

We propose that systems that learn syntactic constraints
can be evaluated using a bag-of-words generation task that
is akin to a monolingual incremental version of the task use
in statistical machine translation. In our task, we take the
target utterance that we want to generate, and place the
words from that utterance into an unordered bag-of-words.
We assume that speakers have a meaning or message that
they want to convey (Levelt, 1989) and the bag-of-words
is a practical way of approximating the message constraints
for utterances in typologically-different languages. The syn-
tactic learner must use its syntactic knowledge to order this
bag-of-words. The generation of the sentence is incremen-
tal, where the learner tries to predict the utterance one
word at a time. As the sentence is produced, the target
word is removed from the bag-of-words. This means that
a learner can use statistics based on the changing set of
words in the bag-of-words as well as information from
the previous words to help in the prediction process. By
reducing the bag-of-words as the sentence is produced, this
task breaks down sentence generation into a recursive
selection of the first word from the gradually diminishing
bag-of-words, and this makes the task more incremental
than standard bag-generation approaches, and hence we
will refer to this approach as the bag-of-words incremental
generation (BIG) task.

To evaluate our syntactic learners, we will have them
produce utterances in our corpora, and then see whether
the learner can correctly predict the original order of all
of the words in each of the utterances. If we average over
all of the utterances in a corpus, then the percentage of
complete utterances correctly produced is the Sentence Pre-
diction Accuracy (SPA). The SPA evaluation measure dif-
fers in several respects from the evaluation measures used
for language models and statistical machine translation.
Evaluation of language models often uses word-based
accuracy measures, often filtered through information-the-
oretic concepts like perplexity and entropy (Jurafsky &
Martin, 2000; Chapter 6). Since the grammaticality of a
sentence depends on the order of all of the words in the
utterance, a word-based accuracy measure is not a suitable
way to measure syntactic knowledge. For example, if a sys-
tem predicted the word order for a set of 10-word utter-
ances and it reversed the position of two words in each
utterance, then its word accuracy would be 80%, even
though it is possible that all of the utterances produced
were ungrammatical (its SPA accuracy would be zero).

The SPA measure is similar to evaluation measures
in statistical machine translation such as Bleu (Papineni,
Roukos, Ward, & Zhu, 2001). The Bleu metric captures
the similarity in various n-grams between a generated utter-
ance and several human reference translations. Since Bleu
is a graded measure of similarity, it does not make a strict
distinction between a sentence that is an exact match, and
therefore guaranteed to be grammatical, and a partial
match, which could be ungrammatical. Even with this lim-
itation, Bleu has transformed the field of statistical
machine translation by reducing the need for laborious
and expensive human evaluation of machine-generated
translations, and thereby increasing the speed of system
development and allowing objective comparison of differ-
ent systems. The SPA metric is similar to word-prediction
accuracy measures and Bleu in that it can be automatically
computed from corpora, but it is stricter in that it makes a
strong distinction between an exact sentence match and a
partial match. In addition, perplexity or Bleu scores are
not typically understood by non-computational linguists
or psychologists, so SPA has another advantage in that it
is transparent and can be compared directly to the average
sentence accuracy in experiments or to the percentage of
test sentences that are rated grammatical by a linguistic
informant.

The SPA measure can be said to measure syntax in so
far as the order of words in human utterances are governed
by syntax. Word order is influenced by many factors such
as structural, lexical, discourse, and semantic knowledge,
and these factors are often incorporated into modern syn-
tactic theories (e.g., Pollard & Sag, 1994). Syntactic theo-
ries use abstract categories and structures to encode the
constraints that govern word order. For example in Eng-
lish, determiners tend to come before nouns and noun
phrases tend to come after transitive verbs. In Japanese,
noun phrases come before verbs and case-marking particles
come after nouns. Hierarchical syntactic knowledge also
has implications for word order. For example, the order
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of elements within a subject phrase is the same regardless if
it is in sentence initial position (‘‘the boy that was hurt is
resting’’) or after an auxiliary verb (‘‘Is the boy that was
hurt resting?’’) and this is captured in hierarchical theories
by representing the ordering of the subject phrase elements
in a subtree within the main clause tree that encodes the
position of the auxiliary verb. These abstract structural
constraints represent hypotheses about the internal repre-
sentation for syntax and these hypotheses are tested by
generating theory-consistent and theory-inconsistent word
sequences that can be tested on linguistic informants. Crit-
ically, the word sequence is the link between the hypothe-
sized syntactic theory and human syntactic knowledge.
Using word sequences to evaluate syntactic knowledge is
therefore a standard approach in the language sciences.

One goal of the BIG–SPA evaluation task is to bring
together research from three domains that share related
goals: developmental psycholinguistics, typological linguis-
tics, and computational linguistics. Since each of these
domains makes different assumptions, it is difficult to inte-
grate these disparate approaches. For example, develop-
mental psycholinguists assume that child-directed speech
is necessary to understand the nature of syntactic develop-
ment in children. Computational linguists do not often use
small corpora of child-directed speech, because their data-
driven algorithms require a large amount of input to yield
high levels of accuracy. Instead, they tend to use large cor-
pora like the Penn Treebank Wall Street Journal corpus,
that includes economic or political news, or the Brown cor-
pus, which includes utterances from computer manuals
(e.g., IBM 7070 Autocoder Reference manual) and federal
and state documents (e.g., the Taxing of Movable Tangible
Property; Francis & Kucera, 1979). Since these types of
corpora do not resemble the input that children receive,
developmental psycholinguists might have good reasons
to be skeptical about the relevance of computational lin-
guistic results with these corpora for the study of language
acquisition.

In addition, because child-directed corpora are smaller
than the massive corpora that are used for computational
linguistics, data-driven algorithms might not work as well
with these corpora. Corpus size is linked to a variety of
issues related to ‘‘the poverty of the stimulus’’, namely
the claim that the input to children is too impoverished
to insure the abstraction of the appropriate syntactic repre-
sentations (Chomsky, 1980). While there is controversy
about whether the input to children is actually impover-
ished (Pullum & Scholz, 2002; Reali & Christiansen,
2005), it is less controversial to say that the input corpora
used by computational systems or researchers may not be
sufficiently complete to allow them to find the appropriate
abstractions. For example in computational linguistics, the
input to computational systems does not always cover the
test set (e.g., data sparseness, unknown words, Manning &
Schütze, 1999). And in developmental psycholinguistics,
the corpora that researchers use may not be big enough
or dense enough to capture the phenomena of interest (Lie-
ven, Behrens, Speares, & Tomasello, 2003; Tomasello &
Stahl, 2004). Given the difficulty in creating large corpora
for typologically-different languages, it is important to
develop and test computational linguistic algorithms that
can work with small corpora. Since the task of generating
a sentence does not require the use of abstract theory-spe-
cific categories that are hard to learn from small corpora,
the BIG–SPA task might be a more appropriate way to
use small unlabeled corpora of child-directed speech for
the study of syntax acquisition.

Another integration problem has to do with applying
computational algorithms to study child-produced utter-
ances. Developmental psycholinguists are interested in
how to characterize the developing syntax in child utter-
ances as these utterances move from simple, sometimes
ungrammatical, utterances to grammatical adult utterances
(Abbot-Smith & Behrens, 2006; Lieven et al., 2003; Pine &
Lieven, 1997; Tomasello, 1992, 2003). Computational
linguistic systems often make assumptions which make it
difficult to use these algorithms with utterances in develop-
ment. Many part-of-speech tagging systems require that
the system know the syntactic tagset before learning begins
and evaluation of these systems requires a tagged corpus or
a dictionary of the words paired with syntactic categories
(Mintz, 2003; Mintz, Newport, & Bever, 2002; Redington,
Chater, & Finch, 1998). There is no consensus in how to
build these tagsets, dictionaries, and tagged corpora for
child utterances, because developmental psychologists dis-
agree about the nature of the categories that children use
at particular points in development. For example in early
syntax development, Pinker (1984) argues that children
link words to adult syntactic categories, while Tomasello
(2003) argues that children initially use lexical-specific
categories.

A third integration difficulty has to do with claims about
the universality of syntax acquisition mechanisms. Devel-
opmental psycholinguists have proposed that distributional
learning mechanisms, akin to those used in computational
linguistics, might be part of the syntactic category induc-
tion mechanism in humans (Mintz, 2003; Redington
et al., 1998). But since these proposals were only tested in
English (and a few other languages; e.g., Chemla, Mintz,
Bernal, & Christophe, in press; Redington et al., 1995),
we do not know about the relative efficacy of these meth-
ods in languages with different language typologies. To
make claims about the universal character of syntax acqui-
sition, a mechanism must be tested on a wide number of
typologically-different languages. But the problem is that
standard evaluation measures, such as those used by the
above researchers, require language-dependent tagsets
and this is a problem when comparing across languages.
For example, Czech corpora sometimes have more than
1000 tags (Hajič & Vidová-Hladká, 1997) and tagging this
type of language would be a challenge for algorithms that
are designed or tuned for smaller tagsets. Another issue is
that linguists in different languages label corpora differently
and this creates variability in the evaluation measures used.
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For example, it has been found that words in Chinese cor-
pora have more part-of-speech labels per word than words
in English or German corpora, and this difference can con-
tribute to the difficulty in part-of-speech tagging (Tseng,
Jurafsky, & Manning, 2005). Since SPA does not use syn-
tactic categories for evaluation, it is less sensitive to differ-
ences in the way that linguists label different languages.

In this paper, we will use the SPA measure with the BIG
task to evaluate several algorithms of the sort that have
been proposed in computational linguistics and develop-
mental psycholinguistics. We used corpora of adult–child
interactions, which include utterances that children typi-
cally use to learn their native language, from 12 typologi-
cally-different languages, which is large enough to allow
some generalization to the full space of human languages.
What follows is divided into three sections. First, the cor-
pora that were used will be described (Typologically-Differ-

ent Corpora). Then several n-gram-based learners will be
compared and evaluated with BIG–SPA (BIG–SPA evalu-

ation of n-gram-based learners). Then a new psycholinguis-
tically-motivated learner (Adjacency–Prominence learner)
will be presented and compared with several simpler learn-
ers (BIG–SPA evaluation of Adjacency–Prominence-type

learners).

2. Typologically-different corpora

To have a typologically-diverse set of corpora for test-
ing, we selected 12 corpora from the CHILDES database
(MacWhinney, 2000): Cantonese, Croatian, English, Esto-
nian, French, German, Hebrew, Hungarian, Japanese,
Sesotho, Tamil, Welsh. In addition, two larger English
and German-Dense corpora from the Max Planck Institute
for Evolutionary Anthropology were also used (Abbot-
Smith & Behrens, 2006; Brandt, Diessel, & Tomasello, in
press; Maslen, Theakston, Lieven, & Tomasello, 2004).
These languages differed syntactically in important ways.
German, Japanese, Croatian, Hungarian, and Tamil have
more freedom in the placement of noun phrases (although
the order is influenced by discourse factors) than English,
French, and Cantonese (Comrie, 1987). Several allowed
arguments to be omitted (e.g., Japanese, Cantonese). Sev-
eral had rich morphological processes that can result in
complex word forms (e.g., Croatian, Estonian, Hungarian,
see ‘‘Number of Cases’’ in Haspelmath, Dryer, Gil, &
Comrie, 2005). Four common word orders were repre-
sented (e.g., SVO English; SOV Japanese; VSO Welsh;
No dominant order, Hungarian; Haspelmath et al.,
2005). Seven language families were represented (Indo-
European, Uralic, Afro-Asiatic, Dravidian, Sino-Tibetan,
Japanese, Niger-Congo; Haspelmath et al., 2005). Eleven
genera were represented (Chinese, Germanic, Finnic,
Romance, Semitic, Ugric, Japanese, Slavic, Bantoid,
Southern Dravidian, Celtic; Haspelmath et al., 2005). All
the corpora involved interactions between a target child
and at least one adult that were collected from multiple
recordings over several months or years (see appendix for
details). For each corpus, the child utterances were the
target child utterances for that corpus, and the adult utter-
ances were all other utterances. Extra codes were removed
from the utterances to yield the original segmented
sequence of words. The punctuation symbols (period, ques-
tion mark, exclamation point) were moved to the front of
the utterances and treated as separate words. This was
done because within the BIG task, we assumed that speak-
ers have a message that they want to convey and therefore
they know whether they were going to make a statement, a
question, or an exclamation, and this knowledge could help
them to generate their utterance. If an utterance had
repeated words, each of the repeated words was given a
number tag to make it unique (e.g., you-1, you-2), since
in a speaker’s message, the meaning of these repeated
words would have to be distinctly represented. These tags
were placed on words starting from the last word, but with
the last word unmarked. For example, the utterance ‘‘nor-
mally when you press those you get a nice tune, don’t
you?’’ would be ‘‘? normally when you-2 press those you-
1 get a nice tune don’t you’’ for learning and testing (exam-
ple utterances in this paper come from either the English or
English-Dense corpora). Using this system for marking
repeated words allowed learners to learn reliable statistics
between the different forms of the same word (e.g., ‘‘you-
2’’ tends to come before ‘‘you’’) and they might even be
able to capture different statistical regularities for each
word. For example, since ‘‘when’’ signals an embedded
clause, it might be followed by ‘‘you-2’’ more than
‘‘you’’. These words were kept distinct in the statistics
and during generation of utterances at test, but for calcula-
tion of SPA, any form of the word was treated as correct
(e.g., ‘‘you-1’’ or ‘‘you-2’’ were equivalent to ‘‘you’’). This
method of marking repeated words is the most appropriate
method for the BIG–SPA task, because of its use of recur-
sive prediction on a gradually diminishing bag-of-words.

3. BIG–SPA evaluation of n-gram learners

To show that an evaluation measure is a useful tool for
comparing syntactic learners, one needs to have a set
of learners that can be compared. Since n-gram statistics,
which use the frequency of sequences of n adjacent
words, are popular in both developmental psycholinguistics
(Thompson & Newport, 2007) and in computational
approaches to syntax acquisition (Reali & Christiansen,
2005), we compared several learners that use these types of
statistics. The simplest learners were a Bigram (two adjacent
words) and a Trigram (three adjacent words) learner using
maximum likelihood estimation equations (Manning &
Schütze, 1999). In language modeling, it is standard to com-
bine different n-grams together in a weighted manner to take
advantage of the greater precision of higher n-gram statistics
with the greater availability of lower n-gram statistics (this is
called smoothing). Therefore, several smoothed n-gram
learners were also tested: Bigram+Trigram learner and
Unigram+Bigram+Trigram learner. In addition to these
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learners, we created a Backoff Trigram learner, which tried
to use trigram statistics if available, and backed-off to
bigram statistics if the trigrams are not available, and finally
backed-off to unigram statistics if the other two statistics
were not available. Parameters were not used to weight
the contribution of these different statistics in these learners,
because parameters that are fitted to particular corpora
make it harder to infer the contribution of each statistic over
all of the corpora. In addition, we also created a Chance
learner whose SPA score estimated the likelihood of getting
a correct sentence by random generation of the utterance
from the bag-of-words. Since an utterance with n words
had n! possible orders for those words, the Chance perfor-
mance percentage for that utterance was 100/n! (notice that
the average length of utterances in a corpus can be derived
from the Chance learner’s score). The learners differed only
in terms of their Choice function, which was the probability
of producing a particular word from the bag-of-words at
each point in a sentence, and the Choice functions for the
learners are shown below.
Definition of statistics used in learners

C(wn�k. . .wn) Frequency of n-gram wn�k . . . wn in input set for k = 0, 1, or 2
NW Number of word tokens

Equations for five different learners

Bigram Choice(wn) = C(wn�1,wn)/C(wn�1)
Trigram Choice(wn) = C(wn�2,wn�1,wn)/C(wn�2, wn�1)
Bigram+Trigram Choice(wn) = C(wn�1,wn)/C(wn�1) + C(wn�2,wn�1,wn)/C(wn�2, wn�1)
Unigram+Bigram+Trigram Choice(wn) = C(wn)/NW+ C(wn�1,wn)/C(wn�1) + C(wn�2,wn�1,wn)/C(wn�2,wn�1)
Backed-off Trigram Choice(wn) = C(wn�2,wn�1,wn)/C(wn�2,wn�1) if C(wn�2,wn�1) > 0

Choice(wn) = C(wn�1,wn)/C(wn�1) if C(wn�2,wn�1) == 0 and C(wn�1) > 0
Choice(wn) = C(wn)/nwords if C(wn�2,wn�1) == 0 and C(wn�1) == 0
If the denominator in the Choice equation was zero at
test (i.e., unknown words), then the Choice function
returned zero. Normally, the optimization of the probabil-
ity of a whole sequence involves the multiplication of
probabilities and this can lead to numerical underflow.
Therefore in language modeling, it is standard to use a
log (base 2) transformation of the probabilities and this
yields an additional computational advantage for whole
sentence optimization since multiplication of probabilities
can be done with addition in log space. But since the
BIG–SPA task does not involve computation of whole
sequence probabilities, there is no computational advan-
tage in using log-transformed probabilities. Instead, to deal
with numerical underflow, all of the Choice functions were
multiplied by 107 and computation was done with integers.
We also tested versions of these learners that used log-
transformed probabilities and compared to the learners
that we present below, the results were similar although
slightly lower, since log probabilities compress the range
of values.

There were two main parts to the BIG–SPA task (see
pseudocode below): collecting statistics on the input, pre-
dicting the test utterances. In the first part, statistics that
were appropriate for a particular learner were collected.
In the second part, the system generated a new utterance
newu incrementally for each bag-of-words b from each
utterance u in the test set. This was done by calculating
the Choice function at each position in a sentence, and
adding the word with the highest Choice value, the win-
ner win, to the new utterance newu. After removing the
actual next word nw from the bag-of-words, the same
procedure was repeated until the bag-of-words was
empty. If the resulting utterance was the same as the tar-
get utterance, then the SPA count was incremented. The
SPA accuracy score was the SPA count divided by the
number of test utterances. One-word utterances were
excluded from testing since there is only one order for
one-word bag-of-words. If two words in the bag-of-
words had the same Choice score, then the system chose
the incorrect word. This insured that the SPA accuracy
was not strongly influenced by chance guessing.
Pseudocode for BIG–SPA task:
collection statistics from the input
For each utterance u in input set

For each word wn in utterance u
Collect statistics C(wn�k. . .wn) for k = 0, 1, 2

## predicting the test utterances
Initialize SPA count to 0.
For each utterance u in test set

Create bag-of-words b from utterance u

Initialize newu to empty string
For each word nw in u

For each word w in b
Calculate Choice(w)

win = word with highest Choice value
Add win to newu

Remove word nw from bag-of-words b

If u is the same as newu, then increment SPA count by 1

The five learners were tested in two different testing sit-
uations: Adult–Child and Adult–Adult. The Adult–Child
situation matched the task that children perform when they
extract knowledge from the adult input and use it in
sequencing their own utterances. This task required the
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ability to generalize from grammatical adult utterances
(e.g., ‘‘Well, you going to tell me who you’ve delivered let-
ters and parcels to this morning?’’) to shorter and some-
times ungrammatical child utterances (e.g., ‘‘who this?’’).
But since the child utterances were relatively simple, this
testing situation did not provide a good measure of how
well a learner would do against more complex adult utter-
ances. Therefore, an Adult–Adult situation was also used,
where 90% of the adult utterances were used for input,
and 10% of the adult utterances were held out for testing
(an example test sentence that was correctly produced
was the 14 word utterance ‘‘do you remember when we
were having a look at them in didsbury park?’’). This situ-
ation showed how well the system typically worked on
adult utterances when given non-overlapping adult input.

Paired t-tests were applied to compare the SPA accuracy
for the different learners using the 14 corpora as a sample
from the wider population of human languages. If a learner
is statistically different from another learner over these 14
corpora, then it is likely that this difference will show up
when tested on other languages that are similar to those in
this sample. For example, our sample did not include Dutch
utterances, but since we have several similar languages (e.g.,
English, German, French), a significant t-test over our sam-
ple would suggest that the difference between those learners
would also generalize to Dutch. Fig. 1 shows the average
sentence prediction accuracy over the corpora. T-tests were
performed on the means for the different learners for each
corpus, because the means equated for the differences in
the size of different test sets. But since the differences in
the means averaged over corpora can be small, Fig. 1 also
shows the total number of correctly produced utterances
Fig. 1. Average SPA scores (%) for n-gram learners in Adult–Adult and Adul
each bar).
for each condition to the right of each bar to emphasize that
small differences in the means can still can amount to large
differences in the number of utterances correctly predicted
(the rank order of the total and mean percentage do not
always match because of the way that correct utterances
were distributed over corpora of different sizes).

The Chance learner was statistically lower than both the
Bigram learner (Adult–Child t(13) = 9.5, p < 0.001; Adult–
Adult, t(13) = 10.9, p < 0.001) and the Trigram learner
(Adult–Child t(13) = 8.5, p < 0.001; Adult–Adult, t(13) =
9.8, p < 0.001), which suggested that the n-gram statistics
in these learners were useful for predicting word order
within the BIG task. The unsmoothed Bigram was better
than the unsmoothed Trigram learner (Adult–Child
t(13) = 8.7, p < 0.001; Adult–Adult, t(13) = 6.7, p < 0.001)
and this was likely due to the greater overlap in bigrams
between the input and test set in the small corpora that were
used (e.g., the bigram ‘‘the man’’ was more likely to overlap
than the trigram ‘‘at the man’’). The combined Bigram+Tri-
gram learner yielded an improvement over the Bigram lear-
ner (Adult–Child t(13) = 4.4, p < 0.001; Adult–Adult,
t(13) = 4.3, p < 0.001) and the Trigram learner (Adult–
Child t(13) = 9.0, p < 0.001; Adult–Adult, t(13) = 10.8,
p < 0.001), which suggested that the trigram statistics, when
available, did improve the prediction accuracy over the
plain bigram and this was likely due to the greater specificity
of trigrams, as they depended on more words than bigrams.
Adding the unigram frequency (Unigram+Bigram+Tri-
gram) seemed to reduce the average SPA score compared
to the Bigram+Trigram, although non-significantly over
the sample (Adult–Child t(13) = 0.6, p = 0.56; Adult–Adult,
t(13) = 1.5, p = 0.15). Finally, we found no significant
t–Child prediction (counts of correct utterances are placed to the right of
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difference between the Unigram+Bigram+Trigram learner
and the Backoff Trigram learner (Adult–Child t(13) = 1.3,
p = 0.20; Adult–Adult, t(13) = 0.7, p = 0.48), which sugges-
ted that these algorithms may not differ across typologically-
different languages.

To understand these results, it is useful to compare them
to other systems. The closest comparable results from a sta-
tistical sentence generation system are the results in the
Halogen model (Langkilde-Geary, 2002). This model used
n-gram type statistics within a whole sentence optimization
sentence generation system. They were able to predict
16.5% of the English utterances in their corpora when
tested under similar conditions to our learners (condition
‘‘no leaf, clause feats’’, where only lexical information
was given to the system). This result was lower than our
results with similar n-grams, but this is expected as their
test corpora had longer utterances. But they also used most
of the Penn Treebank Wall Street Journal corpus as their
input corpus, so their input was several magnitudes larger
than any of our corpora. Therefore compared to learners
that use massive English newspaper corpora in a non-
greedy sentence generation system, our n-gram learners
yielded similar or higher levels of accuracy in utterance pre-
diction with input from small corpora of adult–child inter-
actions in typologically-different languages.

In addition to looking at the means averaged over cor-
pora, it is also useful to look at the SPA results for each
corpus (Adult–Adult test, Fig. 2), as long as one remem-
bers that the differences in the corpora were not just due
to language properties, but also reflected properties of the
particular speakers and the particular recording situation.
One interesting finding in the Adult–Adult prediction
results was that the Unigram+Bigram+Trigram learner
had lower results than the Bigram+Trigram learner in
Fig. 2. SPA scores (%) for n-gram learners
Cantonese, English, English-Dense, and Japanese. One
possible reason that unigram frequencies might be detri-
mental in these languages could be due to the analytic nat-
ure of these languages (low ratio of words to morphemes).
Analytic languages use separate function words to mark
syntactic relationships (e.g., articles like ‘‘the’’ or auxiliary
verbs like ‘‘is’’) and since these words are separated and
occur at different points in a sentence, the high unigram fre-
quency of these function words can be problematic if uni-
gram frequency increases the likelihood of being placed
earlier in sentences. Normally, Japanese is thought to be
a synthetic language, because of its high number of verb
morphemes, but in the CHILDES segmentation system
for Japanese (Miyata, 2000; Miyata & Naka, 1998), these
morphemes were treated as separate words (since these
affixes were easy to demarcate and were simple in meaning,
e.g., the verb ‘‘dekirundayo’’ was segmented as ‘‘dekiru n
da yo’’) and this means that this Japanese corpus was more
analytic than synthetic. These results suggested that uni-
gram frequency could have a negative influence on predic-
tion with analytic languages.

To test this hypothesis statistically, we need to divide the
languages into those that are more analytic and those that
are more synthetic. But since this typological classification
depends on several theory-specific factors (e.g., number of
morphemes in a language) as well as corpus-specific factors
(e.g., word segmentation), we will approximate the subjec-
tive linguistic classification with an objective classification
based on the ratio of unique word types to total word tokens
in the corpus. A synthetic language will have a high type/
token ratio, because a word token will tend to be a unique
combination of morphemes and hence a unique word type,
while in an analytic language, many of the word tokens will
come from a relatively small set of word types. When these
in Adult–Adult prediction by corpus.
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ratios were computed for our corpora, the six languages
with high ratios included the languages that are thought to
be synthetic (Croatian, 0.07; Estonian, 0.08; Hebrew, 0.12,
Hungarian, 0.14; Sesotho, 0.08; Tamil, 0.21; Welsh, 0.07),
while the six languages with low ratios included the rela-
tively more analytic languages (Cantonese, 0.03; English,
0.02; English-Dense, 0.01, French, 0.04; German, 0.03, Ger-
man-Dense, 0.02; Japanese, 0.05). French, German, and
Japanese are sometimes labeled as being synthetic lan-
guages, since they are more synthetic than English, but they
are less synthetic than rich morphological languages like
Croatian (Corbett, 1987), where noun morphology depends
on gender (masculine, feminine, neuter), number (singular,
plural), and case (nominative, vocative, accusative, genitive,
dative, locative, instrumental). To test the hypothesis about
the role of unigram statistics in different language typolo-
gies, we computed the difference between the SPA
score for the Unigram+Bigram+Trigram learner and the
Bigram+Trigram learner for each corpus, and then did a
Welch two-sample t-test to compare the analytic and syn-
thetic group. The difference in the SPA score for the analytic
group (�4.77) was significantly lower than the difference for
the synthetic group (1.19, t(8.5) = 3.5, p = 0.007), which
suggests that the unigram frequencies did negatively reduce
the accuracy of prediction in analytic languages.

Testing these n-gram-based learners in the BIG–SPA task
yielded results that seem comparable to results with other
evaluation measures. Although, a similar systematic com-
parison of n-gram-based learners in typologically-different
languages with other evaluation measures has not been
done, the results here are consistent with the intuition that
there is a greater likelihood of input-test overlap for bigrams
than trigrams, and trigrams are likely to be more informative
than bigrams when available, and therefore algorithms that
are smoothed with several statistics (Bigram+Trigram) are
better able to deal with data sparseness than unsmoothed
algorithms (Bigram learner). An unexpected result was that
a smoothed trigram (Unigram+Bigram+Trigram) learner
was numerically worse (although not significantly so) than
the Bigram+Trigram learner. This seemed to be due the
lower SPA scores for the Unigram+Bigram+Trigram lear-
ner in analytic languages, which suggests that unigram fre-
quencies in certain language typologies might have a
negative impact on word ordering processes. Since the
BIG–SPA task made it possible to test multiple typological-
ly-different languages, it allowed us to ask questions about
how well the differences between learners generalized to a
wider space of languages and whether there were typological
biases in a set of learners.

4. BIG–SPA evaluation of Adjacency–Prominence-type

syntactic learners

One goal of the BIG–SPA task is to allow comparison of
learners from different domains. In this section, we exam-
ined a psychological account of syntax acquisition and
compared it with one of the language models that we pre-
sented earlier. Psychological accounts of syntax acquisi-
tion/processing assume that multiple different factors or
constraints (e.g., semantic, syntactic, lexical) influence
processing choices at different points in a sentence (Bock,
1982; Hirsh-Pasek & Golinkoff, 1996; MacDonald, Pearl-
mutter, & Seidenberg, 1994; Trueswell, Sekerina, Hill, &
Logrip, 1999). The computational complexity of these the-
ories often means that models of these theories can only be
tested on toy languages (Chang, Dell, & Bock, 2006;
Miikkulainen & Dyer, 1991; St.-John & McClelland,
1990), while systems that are designed for real corpora tend
to use simpler statistics that can be used with known opti-
mization techniques (e.g., Langkilde-Geary, 2002). Since
the BIG–SPA task incorporates features that are important
in psycholinguistic theories, e.g., incrementality, it might be
easier to implement ideas from psychological theories
within this task.

Here we examined a corpus-based learner that was
based on an incremental connectionist model of sentence
production and syntax acquisition called the Dual-path
model (Chang, 2002; Chang et al., 2006). The model
accounted for a wide range of syntactic phenomena in
adult sentence production and syntax acquisition. It
learned abstract syntactic representations from meaning–
sentence pairs and these representations allowed the model
to generalize words in a variable-like manner. It accounted
for 12 data points on how syntax is used in adult structural
priming tasks and six phenomena in syntax acquisition.
And lesions to the architecture yielded behavioral results
that approximate double dissociations in aphasia. Since it
could model both processing and acquisition phenomena,
it provided a set of useful hypotheses for constructing a
corpus-based learner that could both learn syntactic
knowledge from the input and use that knowledge in sen-
tence generation.

The Dual-path model had two pathways called the
sequencing and meaning pathways (Fig. 3). The sequenc-
ing pathway incorporated a simple recurrent network
(Elman, 1990) that learned statistical relationships over
sequences, and this part of the architecture was important
for modeling behavior related to abstract syntactic catego-
ries in production. The meaning pathway had a represen-
tation of the message that was to be produced, but it was
completely dependent on the sequencing pathway for
sequencing information. Hence, the meaning system
instantiated a competition between the available concepts
in the speaker’s message. By having an architecture with
these two pathways, the resulting model learned different
types of information in each pathway and also learned
how to integrate this information in production. The
dual-pathways architecture was critical then to the model’s
ability to explain how abstract syntax was learned and
used in sentence production.

The dual-pathways architecture suggested that a corpus-
based syntax learner should have separate components that
focus on sequencing constraints and meaning-based con-
straints. The sequencing component of this learner was
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Fig. 3. The architecture of the Dual-path Model (Chang, 2002).
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implemented with an n-gram adjacency statistic like the
learners that we tested earlier. The meaning component
of this learner was based on the message-based competition
in the meaning system in the Dual-path model. One way to
view the operation of the Dual-path’s meaning system is
that it instantiated a competition between the elements of
the message and more prominent elements tended to win
this competition and were therefore placed earlier in sen-
tences. This message-based competition can be modeled
by constructing a prominence hierarchy for each utterance.
Since we used the bag-of-words to model the constraining
influence of the message, our prominence hierarchy was
instantiated over words and it was implemented by record-
ing which words preceded other words in the input utter-
ances, on the assumption that words that come earlier in
utterances are more prominent on average than words that
come later in utterances. The learner that incorporated the
adjacency statistic and the prominence hierarchy was called
the Adjacency–Prominence learner.

To illustrate how these statistics were collected, the
example sentence ‘‘Is that a nice home for the bus?’’ will
be used (Fig. 4). To represent adjacency information in this
learner, a bigram frequency was collected (rightward
arrows on the top side of Fig. 4). To model the prominence
hierarchy, a prominence frequency was collected, which
encoded how often a word preceded the other words in
the sentence separated by any number of words (leftward
arrows on the bottom side of Fig. 4). To normalize these
frequency counts, they were divided by the frequency that
the two words occurred in together in the same utterance
in any order (this was called the paired frequency). When
the bigram frequency was divided by the paired frequency,
it was called the adjacency statistic and when the promi-
nence frequency was divided by the paired frequency, it
is that a nice
home for the bus

Bigram frequency

Prominence frequency

?

Fig. 4. Bigram and prominence frequencies for the utterance ‘‘Is that a
nice home for the bus?’’.
was called the prominence statistic. While it is possible to
use a smoothed trigram statistic as the adjacency statistic,
the adjacency statistic that was used was kept as a simple
bigram to emphasize the role that the prominence statistic
and the paired frequency might play in the behavior of the
learner. The Adjacency–Prominence learner combined the
adjacency and prominence statistics together to incremen-
tally pick the next word in a sentence.

To demonstrate how these statistics were used by the
Adjacency–Prominence learner, we will work through an
example test utterance ‘‘is that nice?’’ (Fig. 5). In this exam-
ple, we assume that adjacency and prominence statistics
have been collected over an English corpus. To start the
production of the test sentence, the previous word is set
to the punctuation symbol (‘‘?’’ in top left box in Fig. 5)
and the bag-of-words is set to the words ‘‘is’’, ‘‘nice’’,
and ‘‘that’’ (bottom left box in Fig. 5). For each of the
words in the lexicon, a Choice score is collected, which rep-
resents the combined activation from the adjacency and
prominence statistics (right box in Fig. 5). Since questions
tend to start with words like ‘‘is’’ more than words like
‘‘that’’ or ‘‘nice’’ (e.g., ‘‘Is that a nice home for the
bus?’’), the Choice score for ‘‘is’’ will be higher due to the
adjacency statistics (arrows from ‘‘?’’ to ‘‘is’’). And since
‘‘is’’ and ‘‘that’’ can occur in both orders in the input
(e.g., ‘‘that is nice’’, ‘‘is that nice’’), the prominence statis-
tics will not pull for either order (there are arrows to both
‘‘is’’ and ‘‘that’’ from the prominence statistics in Fig. 5).
The word that is produced is the word with the highest
Choice score. Since ‘‘is’’ has the most activation here (three
arrows in Fig. 5), it is produced as the first word in the sen-
tence. Then, the process is started over again with ‘‘is’’ as
the new previous word and the bag-of-words reduced to
just the words ‘‘nice’’ and ‘‘that’’. Since ‘‘is’’ is followed
by both ‘‘that’’ and ‘‘nice’’ in the input, the adjacency sta-
tistics might not be strongly biased to one or the other
word. But since ‘‘that’’ tends to occur before ‘‘nice’’ in gen-
eral (e.g. ‘‘does that look nice?’’), the prominence statistics
will prefer to put ‘‘that’’ first. Since ‘‘that’’ has the strongest
Choice score, it is produced next, and then the process
starts over again. Since there is only one word ‘‘nice’’ in
the bag-of-words, it is produced. Since the produced utter-
ance (‘‘is that nice’’) matches the target utterance, the SPA
score for this one sentence corpus is 100%.
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Fig. 5. Example of production of the first word of ‘‘is that nice?’’ in Adjacency–Prominence learner.
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In order to understand the behavior of the Adjacency–
Prominence learner, we also created learners that just used
the adjacency statistics (Adjacency-only) or just used the
prominence statistics (Prominence-only). We also included
the Chance learner as a baseline and the Bigram learner
from the previous section, because the adjacency statistic
in the Adjacency-only learner differed from the equation
in the standard Bigram learner. The adjacency statistic
and the bigram statistic had the same numerator (e.g., fre-
quency of the adjacent words A and B in the input), but
they had different denominators (unigram frequency of
word A vs. paired frequency of both words). Unlike the
bigram statistic, the paired frequency took into account
the unigram frequency of the word B. The comparison of
the Adjacency-only learner with the Bigram learner will
allow us to determine which approach for adjacency statis-
tics provides a better account of utterance prediction. The
statistics and Choice functions for the learners are defined
below.
Definition of statistics used in learners

C(wn) Frequency of unigram wn (unigram frequency)
C(wn�1,wn) Frequency of bigram wn�1 wn (bigram frequency)
P(wa,wb) Frequency that word wa occurs before wb in an utterance at any distance (prominence frequency)
Pair(wa,wb) Frequency that words wa and wb occur in the same utterance in any order (paired frequency)
length Number of words in the bag-of-words

Equations for four different learners

Bigram Choice(wn) = C(wn�1,wn)/C(wn�1)
Adjacency-only Choiceadjacency(wn) = C(wn�1,wn)/ Pair(wn�1,wn)
Prominence-only ChoiceprominenceðwnÞ ¼

P
W b

Pðwn;wbÞ=Pairðwn;wbÞ for all wb in the bag-of-words; except wn

Adjacency–Prominence Choice(wn) = length * Choiceadjacency(wn) + Choiceprominence(wn)
Fig. 6 shows the results for the Adult–Child (adult input,
child test) and Adult–Adult (90% adult input, 10% adult
test). One question is whether bigram frequency should be
divided by unigram frequency of the previous word (Bigram
learner) or paired frequency of both words (Adjacency-only
learner). We found that the Adjacency-only learner was bet-
ter than Bigram learner in both testing situations (Adult–
Child, t(13) = 5.0, p < 0.001; Adult–Adult, t(13) = 7.8,
p < 0.001). An example of the difference between these two
learners can be seen with the Adult sentence ‘‘? do you want
me to draw a cat’’, which the Adjacency-only learner cor-
rectly produced and the Bigram learner mistakenly pro-
duced as ‘‘? do you want to to draw a cat’’. The reason
that the learner incorrectly produced ‘‘to’’ instead of ‘‘me’’
was because the standard bigram equation had an artifi-
cially strong statistic for ‘‘want’’! ‘‘to’’, because it did
not recognize that ‘‘to’’ was a very frequent word by itself
(the denominator only has the unigram frequency of
‘‘want’’). In the Adjacency-only learner, the adjacency sta-
tistic was the frequency that ‘‘want’’ proceeds ‘‘to’’ divided
by the paired frequency that ‘‘want’’ and ‘‘to’’ occurred in
the same sentence in any order. The adjacency statistic
was weaker for the word ‘‘to’’ after ‘‘want’’, because ‘‘want’’
and ‘‘to’’ were often non-adjacent in an utterance, and this
allowed the word ‘‘me’’ to win out. This suggests that for
word order prediction, the frequency that both words occur
in the same utterance is an important constraint for adjacent
word statistics.

Another question is whether there is evidence that sup-
ports the assumption of the Dual-path model that a syntax
acquisition mechanism will work better if it combines sepa-
rate statistics for sequencing and meaning. Since we have
demonstrated that sequencing statistics like the Adjacency-
only or n-gram statistics are useful, the main question is
whether the prominence statistics, that depend on our bag-
of-words simulated message, will augment or interfere with
the predictions of the sequencing statistics. We found that in
both testing situations, Adjacency–Prominence was better
than Adjacency-only (Adult–Child, t(13) = 7.4, p < 0.001;
Adult–Adult, t(13) = 10.5, p < 0.001) and Prominence-
only (Adult–Child, t(13) = 12.2, p < 0.001; Adult–Adult,



Fig. 6. Average SPA scores (%) for five learners in Adult–Adult and Adult–Child prediction (counts of correct utterances are placed to the right of each
bar).
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t(13) = 17.8, p < 0.001). The Adjacency–Prominence lear-
ner correctly predicted 27,453 more utterances than the
Adjacency-only learner over the corpora in the Adult–
Child situation, and 38,517 more than the Prominence-only
learner.

These results suggest that the adjacency and prominence
statistics capture different parts of the problem of word
order prediction and these statistics integrate together
without interfering with each other. This is partially due
to the way that the Adjacency–Prominence learner used
each statistic. The influence of the adjacency statistics came
from the past (the previous word), while the influence of
the prominence statistics depended on the future (the
words to be produced in the bag-of-words message). Also
these two statistics have different scopes, where the adja-
cency statistics captured linear relationships between
words, while the prominence statistics handled some of
the hierarchical relationships between words. For example,
the Adjacency–Prominence learner was able to predict a
sentence with multiple prepositional phrases like ‘‘you’ve
been playing with your toy mixer in the bathroom for a
few weeks’’ in the Adult–Adult test, because the adjacency
statistics recorded the regularities between the words in the
sequences ‘‘in the bathroom’’ and ‘‘for a few weeks’’ in
other sentences in the input, while the prominence statistics
recorded the fact that ‘‘in’’ preceded ‘‘for’’ more often than
the other way around (e.g., ‘‘put those in the bin for

mummy please’’). In addition to capturing relations of dif-
ferent scopes, these two statistics also differed in their avail-
ability and their reliability. Since prominence statistics were
collected for all the pairs of words in an input utterance at
any distance, they were more likely to be present at test
than the adjacency statistic which only existed if that par-
ticular pair of words in that order occurred in the input.
These two statistics worked together well, because the
prominence statistics were likely to overlap between input
and test but only encoded general position information,
while the adjacency statistics, when they existed, were guar-
anteed to predict only grammatical transitions.

The results were broken down for each individual cor-
pus (Fig. 7). The significant difference between the means
for the Bigram, Adjacency-only, and Adjacency–Promi-
nence learners was evident in each of the individual lan-
guages. Only the Prominence-only learner had a different
pattern. The prominence statistics seemed to have a typol-
ogy-specific bias, since they seemed to be more useful in
analytic languages (e.g., Cantonese, English, English-
Dense, Japanese) than in synthetic languages (e.g., Cro-
atian, Estonian, Hebrew, Hungarian, Sesotho, and Tamil).
The effect of prominence statistics was evident in the differ-
ence between the Adjacency–Prominence learner and the
Adjacency-only learner. This difference was significantly
higher for analytic languages (8.70%) than for synthetic
languages (4.97%, t(11.8) = 4.54, p < 0.001) suggesting that
the prominence statistics improved performance over adja-
cency statistics more in analytic languages. Prominence sta-
tistics recorded all pairwise relationships between words in
a sentence, and these types of statistics could make use of
the greater contextual information associated with frequent
words. So while the frequent words in analytic languages
can be problematic for systems that use unigrams, they
can be beneficial for systems that use prominence statistics.



Fig. 7. SPA scores (%) for five learners in Adult–Adult prediction by corpus.
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In this section, we compared a learner that made use of
statistics that are commonly used in computational linguis-
tics (Bigram learner) with a learner that was inspired by
psychological accounts of human syntax processing
(Dual-path model! Adjacency–Prominence learner). We
found that the Adjacency–Prominence learner worked bet-
ter than the Bigram learner across the 14 corpora, and this
was both because it modulated its statistics with informa-
tion about the set of possible words (Adjacency-only vs.
Bigram comparison) and it combined two statistics that
captured different aspect of the problem of generating word
order (Adjacency–Prominence vs. Adjacency-only and
Prominence-only). In addition, the SPA results broken
down by corpus suggested that prominence statistics were
biased for analytic languages and this suggests that a typo-
logically-general approach for syntax acquisition should
pay attention to the analytic/synthetic distinction.

5. Conclusion

Machine translation was transformed by the incorpo-
ration of statistical techniques and the creation of auto-
matic evaluation measures like BLEU. Likewise, explicit
theories of human syntax acquisition might also be
improved by having an automatic evaluation task that
does not depend on human intuitions and which can
be used in different languages, and the BIG–SPA task
is one method for accomplishing this. Although the
BIG–SPA task is similar to statistical machine transla-
tion tasks, it differs in some important ways. The SPA
measure is a stricter sentence level evaluation measure
which is more appropriate for the evaluation of syntactic
knowledge. The BIG task is closer to psychological the-
ories of language production, because it does utterance
generation in an incremental manner from a constrained
set of concepts (as encoded by the bag-of-words). If the-
ories of syntax acquisition were made explicit and tested
with BIG–SPA, it would be easier to compare them with
learners from other domains, such as computational lin-
guistics, and this might allow a greater cross-fertilization
of ideas.

Although many computational linguistics algorithms
use combinations of n-grams, there has been relatively
little work systematically comparing different n-gram
learners in a large set of typologically-different languages.
While the differences between different combinations of
n-gram learners in the BIG–SPA task matched our
expectations, the overall accuracy of these n-gram learn-
ers was fairly low (<45% SPA). This is because SPA is a
challenging metric, where 100% accuracy requires that all
of the words in all of the utterances in a particular cor-
pus are correctly sequenced, and therefore it is not
expect that n-gram learners trained on small input corpus
will be able to achieve high accuracy on this measure.
Rather, these n-gram models can be seen as default or
baseline learners that can be used for comparison with
learners that incorporate more sophisticated learning
mechanisms.

To improve a syntactic learner, researchers often
embed some constraints of the language or the task into
their system to improve its performance. But this is made
more difficult when testing typologically-different lan-
guages, since one cannot embed properties of a particu-
lar language (e.g., its tagset) into the learner. And
incorporating abstract syntactic universals into a learner
is difficult because these universals often depend on lin-
guistic categories (e.g., noun, phrasal head) and it is dif-
ficult to label these linguistic categories in an equivalent
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way across typologically-different languages. Another
approach for improving learners is to incorporate knowl-
edge about the task into the learner. Since BIG–SPA
task mimics the task of sentence production, we used
ideas from a psycholinguistic model of sentence produc-
tion to develop the Adjacency–Prominence learner and it
was found to have the highest accuracy for utterance
prediction of all the systems tested. This can be attrib-
uted to the fact that it used its Adjacency and Promi-
nence statistics in very different ways. In particular, the
influence of the Prominence statistics changed as the
set of words in the bag-of-words diminished. This kind
of dynamically-changing statistic is not typically used in
computational linguistic approaches to bag generation,
since these approaches do not normally view sentence
planning as an incremental process that adjusts to both
the words that have been produced, but also to the set
of message concepts that the speaker has yet to produce.
The BIG task emphasizes the way that information
changes over a sentence, and therefore this task might
be a useful platform for comparing learners that use
more dynamic learning approaches.

Since the BIG–SPA task does not require a gold stan-
dard for syntax, it can be used to compare syntactic learn-
ers in typologically-different languages. By using a
typologically-diverse sample of languages, one can do sta-
tistics across the sample that allow generalization outside
of the sample. This helps to insure that any hypothesized
improvements in a syntactic learner are not simply optimi-
zations for particular languages or particular corpora, but
actually characterize something shared across the speakers
of those languages. BIG–SPA task can also be used to
look for typological biases in particular algorithms and
that can help in the search for a syntax acquisition algo-
rithm that can work on any human language. Since work
in developmental psycholinguistics and computational lin-
guistics is still predominately focused on a few major lan-
guages (European languages, Chinese, Japanese), it is still
unclear whether many standard algorithms and theories
would work equally well on all human languages (most
of the 2650 languages in the World Atlas of Language
Structures have never been tested, Haspelmath et al.,
2005). Making theories explicit and testing them within
the BIG–SPA task on a larger set of languages is one
way to move towards a more general account of how
humans learn syntax.
Acknowledgements

We would like to thank Dan Jurasky, David Reitter,
Gary Dell, Morten Christiansen, and several anonymous
reviewers for their comments on this work. Early versions
of this manuscript were presented at the Cognitive Science
Society Conference in 2005 (Stressa), 2006 (Vancouver),
and the 2006 Japanese Society for the Language Sciences
Conference (Tokyo).
Appendix

Table of corpora used.
Age of the child is specified in year; months. The utter-

ance counts do not include single word utterances.
Corpora
 Child
 Database
 Age
 # of
Child
Utt.
# of
Adult
Utt.
Cantonese
 Jenny
 CanCorp (Lee
et al., 1996)
2;8-
3;8
8174
 18,171
Croatian
 Vjeran
 Kovacevic
(Kovacevic,
2003)
0;10-
3;2
12,396
 27,144
English
 Anne
 Manchester
(Theakston,
Lieven, Pine,
and Rowland,
2001)
1;10-
2;9
11,594
 27,211
English-
Dense
Brian
 MPI-EVA
(Maslen et al.,
2004)
2;0-
3;11
106,059
 270,575
Estonian
 Vija
 Vija (Vihman
and Vija,
2006)
1;7-
3;1
23,667
 20,782
French
 Phil
 Leveillé
(Suppes,
Smith, and
Leveillé, 1973)
2;1-
3;3
10,498
 17,587
German
 Simone
 Nijmegen
(Miller, 1976)
1;9-
4;0
14,904
 62,187
German-
Dense
Leo
 MPI-EVA
(Abbot-Smith
and Behrens,
2006)
1;11-
4;11
68,931
 198,326
Hebrew
 Lior
 Berman
Longitudinal
(Berman,
1990)
1;5-
3;1
3005
 6952
Hungarian
 Miki
 Réger (Réger,
1986)
1;11-
2;11
4142
 8668
Japanese
 Tai
 Miyata-Tai
(Miyata, 2000)
1;5-
3;1
19,466
 29,093
Sesotho
 Litlhare
 Demuth
(Demuth,
1992)
2;1-
3;2
9259
 13,416
Tamil
 Vanitha
 Narasimhan
(Narasimhan,
1981)
0;9-
2;9
1109
 3575
Welsh
 Dewi
 Jones
(Aldridge,
Borsley,
Clack,
Creunant, and
Jones, 1998)
1;9-
2;6
4358
 4551
References

Abbot-Smith, K., & Behrens, H. (2006). How known constructions
influence the acquisition of new constructions: The German peri-



212 F. Chang et al. / Cognitive Systems Research 9 (2008) 198–213
phrastic passive and future constructions. Cognitive Science, 30(6),
995–1026.

Aldridge, M., Borsley, R. D., Clack, S., Creunant, G., & Jones, B. M.
(1998). The acquisition of noun phrases in Welsh. In Language

acquisition: Knowledge representation and processing. Proceedings of

GALA’97. Edinburgh: University of Edinburgh Press.
Atwell, E., Demetriou, G., Hughes, J., Schiffrin, A., Souter, C., &

Wilcock, S. (2000). A comparative evaluation of modern English
corpus grammatical annotation schemes. ICAME Journal, 24, 7–23.

Berman, R. A. (1990). Acquiring an (S)VO language: Subjectless sentences
in children’s Hebrew. Linguistics, 28, 1135–1166.

Bock, J. K. (1982). Toward a cognitive psychology of syntax: Information
processing contributions to sentence formulation. Psychological

Review, 89(1), 1–47.
Bock, J. K. (1986). Meaning, sound, and syntax: Lexical priming in

sentence production. Journal of Experimental Psychology: Learning,

Memory, and Cognition, 12(4), 575–586.
Bock, J. K., & Irwin, D. E. (1980). Syntactic effects of information

availability in sentence production. Journal of Verbal Learning &

Verbal Behavior, 19(4), 467–484.
Bock, K., Loebell, H., & Morey, R. (1992). From conceptual roles to

structural relations: Bridging the syntactic cleft. Psychological Review,

99(1), 150–171.
Bock, J. K., & Warren, R. K. (1985). Conceptual accessibility and

syntactic structure in sentence formulation. Cognition, 21(1), 47–67.
Brandt, S., Diessel, H., & Tomasello, M. (in press). The acquisition of

German relative clauses: A case study. Journal of Child Language.
Brown, P. F., Della Pietra, V. J., Della Pietra, S. A., & Mercer, R. L.

(1993). The mathematics of statistical machine translation: Parameter
estimation. Computational Linguistics, 19(2), 263–311.

Chang, F. (2002). Symbolically speaking: A connectionist model of
sentence production. Cognitive Science, 26(5), 609–651.

Chang, F., Dell, G. S., & Bock, J. K. (2006). Becoming syntactic.
Psychological Review, 113(2), 234–272.

Chemla, E., Mintz, T. H., Bernal, S., & Christophe, A. (in press).
Categorizing words using ‘‘Frequent Frames: What cross-linguistic
analyses reveal about distributional acquisition strategies. Develop-

mental Science.
Chomsky, N. (1980). Rules and representations. Oxford: Basil Blackwell.
Chomsky, N. (1981). Lectures on government and binding. Dordrecht:

Foris.
Church, K. W. (1989). A stochastic parts program and noun phrase parser

for unrestricted text. In Proceedings of ICASSP-89, Glasgow, Scotland.
Comrie, B. (Ed.). (1987). The world’s major languages. Oxford, UK:

Oxford University Press.
Corbett, G. (1987). Serbo-Croat. In B. Comrie (Ed.), The world’s major

languages. Oxford, UK: Oxford University Press.
Croft, W. (2001). Radical construction grammar: Syntactic theory in

typological perspective. Oxford, UK: Oxford University Press.
Demuth, K. (1992). Acquisition of Sesotho. In D. Slobin (Ed.). The cross-

linguistic study of language acquisition (Vol. 3, pp. 557–638). Hillsdale,
NJ: Lawrence Erlbaum Associates.

Dermatas, E., & Kokkinakis, G. (1995). Automatic stochastic tagging of
natural language texts. Computational Linguistics, 21(2), 137–163.

Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14(2),
179–211.

Ferreira, V. S. (1996). Is it better to give than to donate? Syntactic
flexibility in language production. Journal of Memory and Language,

35(5), 724–755.
Ferreira, V. S., & Yoshita, H. (2003). Given-new ordering effects on the

production of scrambled sentences in Japanese. Journal of Psycholin-

guistic Research, 32, 669–692.
Francis, W. N., & Kucera, H. (1979). Brown corpus manual [Electronic

Version] from http://khnt.hit.uib.no/icame/manuals/brown/
INDEX.HTM.

Germann, U., Jahr, M., Knight, K., Marcu, D., & Yamada, K. (2004).
Fast decoding and optimal decoding for machine translation. Artificial

Intelligence, 154(1–2), 127–143.
Goldberg, A. E. (1995). Constructions: A construction grammar approach

to argument structure. Chicago: University of Chicago Press.
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